domingo, 15 de marzo de 2015

UNIDAD 5 ONDAS, LUZ Y SONIDO.


                 LAS ONDAS. OTRO TIPO DE MOVIMIENTO.

Una onda es una perturbación que se propaga desde el punto en que se produjo hacia el medio que rodea ese punto.
Las ondas materiales (todas menos las electromagnéticas) requieren un medio elástico para propagarse.
El medio elástico se deforma y se recupera vibrando al paso de la onda.
La perturbación comunica una agitación a la primera partícula del medio en que impacta -este es el foco de las ondas- y en esa partícula se inicia la onda.
La perturbación se transmite en todas las direcciones por las que se extiende el medio que rodea al foco con una velocidad constante en todas las direcciones, siempre que el medio sea isótropo ( de iguales características físico- químicas en todas las direcciones ).

Todas las partículas del medio son alcanzadas con un cierto retraso respecto a la primera y se ponen a vibrar: recuerda la ola de los espectadores en un estadio de fútbol.

La forma de la onda es la foto de la perturbación propagándose, la instantánea que congela las posiciones de todas las partículas en ese instante.

Curiosamente, la representación de las distancias de separación de la posición de equilibrio de las partículas al vibrar frente al tiempo dan una función matemática seno que, una vez representada en el papel, tiene forma de onda.
Podemos predecir la posición que ocuparán dichas partículas más tarde, aplicando esta función matemática.

El movimiento de cada partícula respecto a la posición de equilibrio en que estaba antes de llegarle la perturbación es un movimiento vibratorio armónico simple.

Una onda transporta energía y cantidad de movimiento pero no transporta materia: las partículas vibran alrededor de la posición de equilibrio pero no viajan con la perturbación.


Veamos un ejemplo: la onda que transmite un látigo lleva una energía que se descarga al golpear su punta. Las partículas del látigo vibran, pero no se desplazan con la onda.
Las partículas perturbadas por la onda sufren unas fuerzas variables en dirección e intensidad que les producen una aceleración variable y un M.A.S. 

Pulso y tren de ondas

El movimiento de cualquier objeto material en un medio (aire, agua, etc) puede ser considerado como una fuente de ondas. Al moverse perturba el medio que lo rodea y esta perturbación, al propagarse, puede originar un pulso o un tren de ondas.
Un impulso único, una vibración única en el extremo de una cuerda, al propagarse por ella origina un tipo de onda llamada pulso. Las partículas oscilan una sola vez al paso del pulso, transmiten la energía y se quedan como estaban inicialmente. El pulso sólo está un tiempo en cada lugar del espacio. El sonido de un disparo es un pulso de onda sonora.
Si las vibraciones que aplicamos al extremo de la cuerda se suceden de forma continuada se forma un tren de ondas que se desplazará a lo largo de la cuerda.

Tipos de ondas: ondas transversales y ondas longitudinales

En función del tipo de soporte que requieren para su propagación las ondas se clasifican en mecánicas y electromagnéticas. Las mecánicas requieren un medio elástico para propagarse y las electromagnéticas no, se pueden propagar en el vacío.
Si las clasificamos en función de como vibran respecto a la dirección de propagación tenemos las ondas transversales y las longitudinales.
Si las partículas del medio en el que se propaga la perturbación vibran perpendicularmente a la dirección de propagación las ondas se llaman transversales. Si vibran en la misma dirección se llaman longitudinales.

Aceptaremos que la forma de los pulsos no varía durante la propagación, lo cual sólo es sólo cierto para las ondas electromagnéticas propagándose en el vacío. Las demás ondas se atenúan.
Vamos a referirnos únicamente a ondas cuyos pulsos pueden ser descritos por las funciones matemáticas seno y coseno. Lamamos a estas ondas ondas armónicas. Las partículas del medio en que se propaga una ondas transversal (en este caso las de la cuerda) vibran perpendicularmente a la posición inicial de la cuerda, separándose de la posición inicial, subiendo y bajando con un movimiento vibratorio armónico simple.
La separación de la posición de equilibrio responde a la fórmula y(t )=A· sen (w t), donde A es la amplitud o separación máxima. La velocidad de vibración de las partículas es variable ( v=A ·cos wt ), perpendicular a la dirección de propagación y diferente de la velocidad de propagación del pulso (V) que es constante.
Las ondas tranversales tienen crestas y valles y las longitudinales tienen compresiones y dilataciones. En los dos tipos de ondas una partícula siempre se separa armónicamente de la posición de equilibrio.
Si una onda interfiere con otra en determinados puntos puede ocurrir que se anule la vibración formándose un nodo (mira el dibujo animado del inicio de la página que representa la onda estacionaria en una cuerda).
Las ondas longitudinales (como las del sonido) se propagan en medios con resistencia a la compresión (gases, líquidos y sólidos) y las transversales necesitan medios con resistencia a la flexión, como la superficie de un líquido, y en general medios rígidos. Los gases y los líquidos no transmiten las ondas transversales.

Longitud de onda, frecuencia y periodo

Se define la longitud de onda, l, como la distancia que recorre el pulso mientras un punto realiza una oscilación completa. El tiempo que tarda en realizar una oscilación se llama periodo ( T ) y la frecuencia ( n ) es el número de oscilaciones (vibraciones) que efectúa cualquier punto de la onda en un segundo.
longitud de onda , amplitud

Las ondas viajeras a lo largo de una cuerda son ondas unidimensionales y, como todas las ondas, realizan una transmisión de energía y cantidad de movimiento sin transporte de materia.
Cuando dos ondas se cruzan se producen los fenómenos de interferencia que afectan a las partículas que están en el cruce pero no a las ondas, de manera que cada una sigue su camino sin alterar ninguna de sus características ni el valor de la energía transportada.
Realiza, observa y comprueba lo anterior en la propagación de una onda en una cuerda tensa.
También puedes observar, como son las ondas que dan lugar a las olas del mar.

     GENERALIDADES DE ONDAS TRANSVERSAL, CRESTA, VALLE, LONGITUD Y
                                      AMPLITUD NODO Y ANTI NODO.


Cuando una cuerda tensa se pulsa o se roza la perturbación resultante se propaga a lo largo de ella. Dicha perturbación consiste en la variación de la forma de la cuerda a partir de su estado de equilibrio: los segmentos de la cuerda se mueven en una dirección perpendicular a la cuerda y por tanto perpendicularmente a la dirección de propagación de la perturbación. Una onda en la que la perturbación es perpendicular a la dirección de propagación se denomina onda transversal.


                       
                                                                   CRESTA.


  • Cresta: La cresta es el punto de máxima elongación o máxima amplitud de onda; es decir, el punto de la onda más separado de su posición de reposo.
  • Período (T): El periodo es el tiempo que tarda la onda en ir de un punto de máxima amplitud al siguiente.
  • Amplitud (A): La amplitud es la distancia vertical entre una cresta y el punto medio de la onda. Nótese que pueden existir ondas cuya amplitud sea variable, es decir, crezca o decrezca con el paso del tiempo.
  • Frecuencia (f): Número de veces que es repetida dicha vibración por unidad de tiempo. En otras palabras, es una simple repetición de valores por un período determinado.
T = \frac{1}{f}
  • Valle: Es el punto más bajo de una onda.
  • Longitud de onda (\lambda): Es la distancia que hay entre el mismo punto de dos ondulaciones consecutivas, o la distancia entre dos crestas consecutivas.
  • Nodo: es el punto donde la onda cruza la línea de equilibrio.
  • Elongación (x): es la distancia que hay, en forma perpendicular, entre un punto de la onda y la línea de equilibrio.
  • Ciclo: es una oscilación, o viaje completo de ida y vuelta.
  • Velocidad de propagación (v): es la velocidad a la que se propaga el movimiento ondulatorio. Su valor es el cociente de la longitud de onda y su período.
v = \frac{\lambda}{T}
                                                      ANTI NODO.

En física, el nodo es todo punto de una onda estacionaria cuya amplitud es cero en cualquier momento.
El punto intermedio de cada par de nodos, la amplitud de vibración máxima se denomina vientre o antinodo.
Hay puntos que no vibran (nodos), que permanecen inmóviles, estacionarios, mientras que otros (vientres o antinodos) lo hacen con una amplitud de vibración máxima, igual al doble de la de las ondas que interfieren, y con una energía máxima. El nombre de onda estacionaria proviene de la aparente inmovilidad de los nodos. La distancia que separa dos nodos o dos antinodos consecutivos es media longitud de onda.
Si las ondas armónicas se combinan en determinado medio y tienen la misma frecuencia y longitud de onda, se encuentra que la resultante posee un patrón estacionario, denominado onda estacionaria.
Para entender mejor los que son los “nodos y anti nodos” veremos  lo siguiente:
Onda estacionaria:
Un tipo de superposición de ondas especialmente interesante es el que tiene lugar entre dos ondas de idénticas características pero propagándose en sentido contrario. Las ondas resultantes reciben el nombre de ondas estacionarias, pues no implican un movimiento de avance de la perturbación.
Este tipo de ondas están asociadas a reflexiones en los límites de separación de medios de propiedades diferentes. Dichos límites pueden ser básicamente de dos tipos, libres y fijos. El nudo de unión de dos cuerdas de diferente grosor sería un ejemplo de límite libre; por el contrario, el extremo de la cuerda unido a un punto fijo en una pared sería un límite fijo.
Se comprueba experimentalmente que en un límite libre la onda reflejada tiene las mismas características que la onda incidente, tan sólo difieren en el sentido de avance de la perturbación. Por el contrario, en un límite fijo la onda reflejada posee las mismas características que la incidente, pero está desfasada p radianes respecto a la onda incidente.

                         SONIDO: PRODUCCIÓN Y PROPAGACIÓN.

Para la existencia del sonido necesitamos:
  • Un cuerpo que produzca la vibración
  • Un medio transmisor de la vibración
  • Un receptor
La frecuencia es el número de vibraciones u oscilaciones completas que se efectúan en 1 segundo.
El sonido se produce cuando un cuerpo vibra con una frecuencia comprendida entre 20 y 20000 Hz y existe un medio material en el que pueda propagarse.
Una guitarra produce sonido si vibra con una frecuencia comprendida entre 20 y 20.000

El sonido se transmite a través de medios materiales, sólidos, líquidos o gaseosos pero nunca a través del vacío.
El sonido es una onda. Una onda es una perturbación que se propaga por el espacio.En una onda se propaga energía, no materia.
Para que el sonido pueda llegar a nuestros oídos necesita un espacio o medio de propagación, este normalmente suele ser el aire.
El sonido se propaga en el aire a una velocidad de 340 m/s a temperatura normal (aproximadamente a 20º).
El sonido se propaga a diferentes velocidades en medios de distinta densidad. En general, se propaga a mayor velocidad en líquidos y sólidos que en gases  (como el aire). La velocidad de propagación del sonido es, por ejemplo, de unos 1.509,7 m/s en el agua y de unos 5.930 m/s en el acero  Un cuerpo en oscilación pone en movimiento a las moléculas de aire (del medio) que lo rodean. Éstas, a su vez, transmiten ese movimiento a las moléculas vecinas y así sucesivamente.

El sonido se refleja: el eco y la reverberación

Una onda sonora puede encontrar obstáculos en su recorrido de propagación, que alterarán su trayectoria y velocidad y eso tendrá consecuencias en el sonido resultante. Los efectos acústicos más destacados son el eco y la reverberación :
El eco es un fenómeno consistente en escuchar un sonido después de haberse extinguido la sensación producida por la onda sonora. Se produce eco cuando la onda sonora se refleja perpendicularmente en una pared.
El oído pude distinguir separadamente sensaciones que estén por encima del tiempo de persistencia, que es de o´1 segundos par sonidos musicales y 0´07 seg pra sonidos secos (palabras). Por tanto, si el oído capta un sonido directo y, después de los tiempos de persistencia especificados, capta el sondio reflejado, se apreciará el efecto del eco. Para que se produzca el eco, la superfice reflectante debe estar separada del foco sonoro una determinada distncia: 17 metros para sonidos musicales y 11´34 m para sonidos secos.
Se produce la reverberación cuando las ondas reflejadas llegan al oyente antes de la extinción de la onda directa, es decir, en un tiempo menor que el de la persistencia acústica del sonido. este fenómeno es de suma importancia, ya que se produce en cualquier recinto en el que se propaga una onda sonora. El oyente no sólo percibe la onda directa, sino las sucesivas reflexiones que la misma produce en las distintas superficies del recinto. Controlando adecuadamente este efecto, se contribuye a mejoras las condiciones acústicas de los locales tales como teatros, salas de concierto y, en general, todo tipo de salas.
   
                                      RECEPCIÓN DE ONDAS SONORAS.


Una onda sonora es una onda longitudinal que transmite lo que se asocia con sonido. Si se propaga en un medio elástico y continuo genera una variación local de presión o densidad, que se transmite en forma de onda esférica periódica ocuasiperiódica. Mecánicamente las ondas sonoras son un tipo de onda elástica.
Las variaciones de presión, humedad o temperatura del medio, producen el desplazamiento de las moléculas que lo forman. Cada molécula transmite la vibración a las que se encuentren en su vecindad, provocando un movimiento en cadena. Las diferencias de presión generadas por la propagación del movimiento de las moléculas del medio, producen en el oído humano una sensación descrita como sonido.
Percepción humana de las ondas sonoras
El hercio (Hz) es la unidad que expresa la cantidad de vibraciones que emite una fuente sonora por unidad de tiempo (frecuencia). Se considera que el oído humano puede percibir ondas sonoras de frecuencias entre los 20 y los 20.000 Hz, si bien también se consideran rangos entre 16 Hz (aproximadamente la nota más grave de un órgano de iglesia: do0 = 16,25 Hz) y 16.000 Hz (o 16 kHz). Las ondas que poseen una frecuencia inferior a la audible se denominan infrasónicas y las superiores ultrasónicas.
La sensación de sonoridad es la percepción sonora que el hombre tiene de la intensidad de un sonido. La sonoridad se mide mediante una magnitud llamada fonio, que utiliza una escala arbitraria cuyo cero (el llamado umbral de audición) corresponde a I0=1 × 10-12 W/ a 1 kHz.
                                             NATURALEZA DUAL DE LA LUZ.

A principios del siglo XX, Planck y Einstein encontraron que la teoría ondulatoria de la luz no explicaba ciertos hechos experimentales. Por ejemplo, cuando se irradia luz sobre la superficie de ciertos metales, estos emiten electrones. Este hecho no sería extraño si se pensase que la luz como fuente de energía interactúa con la materia arrancando electrones. Por lo tanto, sería de esperar que si se aumentase la intensidad de la luz, los electrones saliesen con más velocidad, sin embargo, lo que ocurre, es que ha medida que aumenta la intensidad de la luz, el número de electrones que salen aumenta, pero todos ellos salen con la misma velocidad y para conseguir que aumente la velocidad de salida de los electrones hay que aumentar la frecuencia de la luz suministrada.
Este fenómeno fue explicado por Planck en 1900 imaginando que la luz está compuesta por paquetes de ondas llamados cuantos o fotones, es decir, que la luz posee una naturaleza corpuscular. Cada fotón posee una determinada energía que sólo depende de su frecuencia:
 
donde“u”es la frecuencia de la luz y “h” la llamada constante de Planck cuyo valor es de 6'67.10-34 J.s. A mayor frecuencia mayor energía de la luz incidente y como la frecuencia es inversamente proporcional a la longitud de onda, a menor longitud de onda, mayor energía. En el siguiente gráfico se muestra desde las ondas menos energéticas, que son las ondas de radio hasta las más energéticas que son los rayos γ:

Para liberar un electrón hace falta una energía mínima h..υo, donde υo es la frecuencia umbral y por debajo de ella no se arrancan electrones. A medida que la frecuencia aumenta, la energía es mayor y por tanto la velocidad de salida de los e aumenta. Sin embargo, si aumenta la intensidad de la luz se aumenta el número de fotones, pero no la energía de éstos, por lo tanto saldrán más e- pero todos con la misma velocidad.
Hay ciertos fenómenos de la luz que no se pueden explicar por la teoría corpuscular de la luz y sólo son explicables atendiendo a la teoría ondulatoria, por eso se habla de la naturaleza dual de la luz (onda y corpúsculo).
Se ha observado que cuando la luz interactúa con los átomos, éstos absorben radiación electromagnética incluso por debajo de la frecuencia umbral, sin embargo, cada átomo absorbe únicamente luz de determinadas frecuencias. Hay aparatos que registran estas frecuencias o longitudes de onda de la radiación absorbida, denominados espectroscopios.

                      REFLEXIÓN, REFRACCIÓN Y DIFRACCIÓN.

Las ondas al llegar a la superficie de separación de dos medios puede ser reflejada o transmitida (refractada o difractada).


La reflexión: puede ser parcial o total. Además puede producirse con cambio de fase o no dependiendo de la rigidez de la superficie de separación.

Las ondas transmitidas pueden ser refractadas o difractadas:

Refracción: se da cuando la onda pasa de un medio a otro y se producen cambios en la velocidad y en la dirección de propagación.

Difracción: se produce cuando la onda "choca" contra un obstáculo o penetra por una agujero. La mayor difracción se produce cuando el tamaño del agujero o del obstáculo son parecidos a la longitud de onda de la onda incidente.

Estas propiedades de las ondas sirven para todas las ondas; desde las electromagnéticas (como la luz, o las ondas de radio o los rayos X) hasta las ondas de presión (sonoras) o las ondas en el agua o las producidas por los terremotos.










                                














No hay comentarios:

Publicar un comentario