lunes, 16 de marzo de 2015

UNIDAD 6 REACCIONES QUIMICAS.

                                             DEFINICIÓN Y ORIGEN E ISOTOPOS 

LOS ISÓTOPOS.

Son todos los tipos de átomos de un mismo elemento, que se encuentran en el mismo sitio de la tabla periódica pero tiene diferente número másico (A). Los átomos que son isótopos entre sí son los que tienen igual número atómico (número de protones en el núcleo) pero diferente número másico (suma del número de neutrones y el de protones en el núcleo). Por lo tanto difieren en el número de neutrones. La mayoría de los elementos químicos poseen más de un isótopo. Solamente 21 elementos (ejemplos: berilio, sodio) poseen un solo isótopo natural.

Los isótopos se denotan por el nombre del elemento correspondiente seguido por el número másico, separados habitualmente por un guión (carbono-12, carbono-14, uranio-238, etc.). En forma simbólica, el número de nucleones se añade como superíndice a la izquierda del símbolo químico: 3H (hidrógeno-3). Algunos isótopos poseen nombres especiales, como el hidrógeno-2, llamado deuterio, y el hidrógeno-3, conocido como tritio.

DEFINICIÓN DE ION.

Es una partícula cargada constituida por un átomo o conjunto de átomos neutros que ganaron o perdieron electrones, fenómeno que se conoce como ionización.

Los iones cargados negativamente, producidos por la ganancia de electrones, se conocen como aniones (que son atraídos por el ánodo) y los cargados positivamente, consecuencia de una pérdida de electrones, se conocen como cationes (los que son atraídos por el cátodo).

'Anión' y 'catión' significan:

Anión: "el que va hacia arriba". Tiene carga eléctrica negativa.
Catión: "el que va hacia abajo". Tiene carga eléctrica positiva.
'Ánodo' y 'cátodo' utilizan el sufijo '-odo', del griego odos (-οδος), que significa camino o vía.

Ánodo: "camino ascendente".
Cátodo: "camino descendente".
Un ion conformado por un solo átomo se denomina ion monoatómico, a diferencia de uno conformado por dos o más átomos, que se denomina ion poliatómico

                                 ISOTOPOS RADIOACTIVOS. USOS ACTUALES.

Los Isótopos radiactivos o radioisótopos son isótopos inestables de algunos elementos. Se transforman en otros elementos mediante la emisión de partículas o de radiaciones gamma.
APLICACIONES DE LOS ISÓTOPOS RADIACTIVOS
La primera utilización de los isótopos radiactivos con fines experimentales se realizó en Austria en 1913, justamente diez años después de la concesión del Premio Nobel a Henry Becquerel y Marie Curie por el descubrimiento de la Radiactividad. Fue concretamente el físico George Charles de Hevery quien utilizó un isótopo de plomo (Pb-210) para estudiar la solubilidad del sulfato y cromato de plomo.
Con el invento del ciclotrón a principios de la década de los treinta y el posterior desarrollo de los reactores nucleares en la década de los cincuenta comienza la fabricación industrial de isótopos radiactivos.
   Las aplicaciones de los isótopos radiactivos son múltiples y abarcan distintos campos como:

Actividades médicas

En las instalaciones médicas y hospitalarias, el uso de isótopos radiactivos para el diagnóstico y tratamiento de enfermedades ha ido creciendo progresivamente en los últimos cuarenta años.

Es común la utilización de elementos radiactivos no encapsulados, normalmente en estado líquido, como trazadores para el estudio del corazón, hígado, glándula tiroides, etc. En estas actividades se generan materiales de desecho contaminados con los elementos radiactivos empleados como son las jeringuillas, agujas, viales contenedores de líquidos radiactivos, guantes, papel, tejidos y material médico diverso.

En el tratamiento de tumores se emplean fuentes encapsuladas que deben ser sustituidas regularmente debido al decaimiento natural de su actividad

Los ensayos de ciertos fármacos con animales, dan lugar a los residuos biológicos a los que hay que proporcionar también un tratamiento similar a cualquier tipo de residuo radiactivo

Actividades de Investigación:
También se producen residuos radiactivos en aquellas actividades de investigación que emplean fuentes encapsuladas o elementos trazadores con isótopos radiactivos.
En los centros de investigación nuclear (laboratorios, universidades, reactores de enseñanza e investigación) se producen a su vez residuos radiactivos de naturaleza física y química muy variable, que requieren también una gestión segura y eficaz.

Actividades Industriales:
Isótopos radiactivos
Es frecuente y especialmente extendida la utilización de isótopos radiactivos en procesos industriales, generalmente fuentes encapsuladas de baja actividad.

Ejemplos típicos de estas aplicaciones industriales son las medidas de nivel, humedad, densidad o espesor en procesos continuos o de difícil acceso, la utilización de grammagrafias para la realización de ensayos no destructivos, su aplicación en instalaciones de esterilización, etc.

Todas estas aplicaciones son muy beneficiosas para la humanidad, pero como cualquier otra actividad, genera residuos que es necesario tratar y gestionar para preservar al hombre y al medio ambiente de las acciones perniciosas de las radiaciones.
RESIDUOS DE LOS ISÓTOPOS RADIACTIVOS
La gestión de los residuos radiactivos no había recibido hasta la década de los 70 la misma atención que se había dado a la generación de energía, desde la prospección de minerales de uranio hasta la fabricación de los elementos combustibles.
Sin embargo desde principios de los años 70 el problema de la gestión de los residuos ha sido planteado muy seriamente y la ciencia y tecnología han tenido que actuar con urgencia para encontrar soluciones.

Es importante tener en cuenta que hemos de enfrentarnos al problema al margen de cual sea el futuro de la energía nuclear, porque el problema de la evacuación o almacenamiento de los residuos no desaparecería si se clausurasen todas las centrales nucleares puesto que ya existen miles de toneladas almacenadas en las propias centrales.

                                      REACCIONES Y ECUACIONES QUÍMICAS.

 Ecuaciones Químicas:

Definición: Son expresiones matemáticas abreviadas que se utilizan para describir lo que sucede en una reacción química en sus estados inicial y final. En ella figuran dos miembros; en el primero, los símbolos o fórmulas de los reactantes, reaccionantes o reactivos y en el segundo los símbolos o fórmulas de los productos. Para separar ambos miembros se utiliza una flecha que generalmente se dirige hacia la derecha, indicando el sentido de la reacción:
A + BC AB + C
Ej. : La ecuación química que describe la reacción entre el magnesio y el oxígeno es:
2 Mg + O2 2 MgO Reactantes Producto
Significado de las ecuaciones químicas:
a) Cualitativo: Indica la clase o calidad de las sustancias reaccionantes y productos. En la ecuación anterior, el magnesio reacciona con el oxígeno para obtener óxido de magnesio
b) Cuantitativo: Representa la cantidad de átomos, moléculas, el peso o el volumen de los reactivos y de los productos.
En la ecuación química anterior, se entiende que dos moléculas (o moles) de magnesio, reaccionan con una molécula ( o mole) de oxígeno para obtenerse dos moléculas ( o moles) de óxido de magnesio. También se puede calcular la cantidad en gramos del producto, tomando como base los pesos atómicos de los reaccionantes (Con ayuda de la Tabla Periódica) .
Características de las Ecuaciones Químicas:
Los reactantes y productos se representan utilizando símbolos para los elementos y fórmulas para los compuestos.
Se debe indicar el estado físico de los reactantes y productos entre paréntesis: (g), (l), (s), (ac.) si se presentan en estado gaseoso, líquido, sólido o en solución acuosa respectivamente.
El número y tipo de átomos en ambos miembros deben ser iguales, conforme al principio de conservación de la masa; si esto es así, la ecuación está balanceada.

II.- Reacciones Químicas:

Definición: Son procesos químicos donde las sustancias intervinientes, sufren cambios en su estructura, para dar origen a otras sustancias. El cambio es más fácil entre sustancias líquidas o gaseosas, o en solución, debido a que se hallan más separadas y permiten un contacto más íntimo entre los cuerpos reaccionantes.
También se puede decir que es un fenómeno químico, en donde se producen sustancias distintas a las que les dan origen.
Características o Evidencias de una Reacción Química:
Formación de precipitados.
Formación de gases acompañados de cambios de temperatura. Desprendimiento de luz y de energía.
Reglas:
Ej. :
En toda reacción se conservan los átomos y las cargas (si hay iones)
No puede ocurrir un proceso de oxidación o de reducción aislado, ambos ocurren simultáneamente.
No se pueden formar productos que reaccionen enérgicamente con alguno de los productos obtenidos.
Na3N + 3H2O 3 NaOH + NH3
Tipos de Reacciones Químicas:
A) De acuerdo a las sustancias reaccionantes:
masa molecular:
Monografias.com
Ej. :
Reacciones de composición, adición o síntesis:
Cuando dos o más sustancias se unen para formar una más compleja o de mayor
Monografias.com
Reacciones de descomposición:
Cuando una sustancia compleja por acción de diferentes factores, se descompone en otras más sencillas:
Monografias.com
Ej. :
Monografias.com
Cuando las descompone el calor, se llaman también de disociación térmica.
Reacciones de simple sustitución:
Denominadas también de simple desplazamiento cuando una sustancia simple reacciona con otra compuesta, reemplazando a uno de sus componentes.
Ej. :
Monografias.com
Reacciones de doble sustitución:
También se denominan de doble desplazamiento o metátesis y ocurren cuando hay
intercambio de elementos entre dos compuestos diferentes y de esta manera originan nuevas sustancias. * Se presentan cuando las sustancias reaccionantes están en estado iónico por encontrarse en solución, combinándose entre sí sus iones con mucha facilidad, para formar sustancias que permanecen estables en el medio reaccionante:
Monografias.com
Ej. :
Monografias.com
Reacciones Reversibles:
Cuando los productos de una reacción pueden volver a reaccionar entre sí, para generar los reactivos iniciales. También se puede decir que se realiza en ambos sentidos.
Monografias.com
Ej. :
Monografias.com
Reacciones Irreversibles:
Cuando los productos permanecen estables y no dan lugar a que se formen los reactivos iniciales.
Monografias.com
Ej. :
Monografias.com
Toda reacción es más o menos reversible; pero en muchos casos esta reversibilidad es tan insignificante que se prefiere considerar prácticamente irreversible.
B) De acuerdo a su energía:
En toda reacción química hay emisión o absorción de energía que se manifiesta como luz y/o calor. Aquí aparece el concepto de Entalpía, entendida como la energía que se libera o absorbe.
Reacciones Exotérmicas:
Cuando al producirse, hay desprendimiento o se libera calor.
Monografias.com
Ej. :
Monografias.com
Reacciones Endotérmicas:
Cuando es necesario la absorción de calor para que se puedan llevar a cabo.
Ej. :
Monografias.com
Monografias.com
La energía liberada o absorbida se denomina calor de reacción o entalpía (H) por consiguiente:
En una reacción exotérmica la entalpía es negativa
En una reacción endotérmica la entalpía es positiva
C) Reacciones Especiales:
Reacción de Haber:
Permite obtener el amoniaco partiendo del hidrógeno y nitrógeno
sustancias:
N2 + 3H2 ? 2NH3
Reacción Termoquímica:
En estas reacciones se indica la presión, temperatura y estado físico de las
Monografias.com
Reacción de Combustión:
En estas reacciones, el oxígeno se combina con una sustancia combustible y como consecuencia se desprende calor y/o luz. Las sustancias orgánicas pueden presentar reacciones de combustión completa o incompleta:
R. Completa: Cuando se forma como producto final CO2 y H2O (en caso de sustancias orgánicas)
Monografias.com
Ej. :
Monografias.com
R. Incompleta: Cuando el oxígeno no es suficiente, se produce CO y H2O, aunque muchas veces se produce carbón.
Monografias.com
Reacción Catalítica:
Se acelera por la intervención de sustancias llamadas catalizadores que permanecen inalterables al final de la reacción.
Catalizador: Sustancia que acelera la reacción. No reacciona. Se recupera todo
Ej. :
Monografias.com
Reacción REDOX:
Reacciones en donde hay variación de los estados de oxidación de las sustancias por transferencia de electrones.
Monografias.com
Reacción de Neutralización:
Consiste en la reacción de un ácido con una base.
Monografias.com


                                 LEY DE CONSERVACIÓN DE LA MATERIA


La ley de conservación de la masa, ley de conservación de la materia o ley de Lomonósov-Lavoisier es una de las leyes fundamentales en todas las ciencias naturales. Fue elaborada independientemente por Mijaíl Lomonósov en 1745 y por Antoine Lavoisier en 1785. Se puede enunciar como «En una reacción química ordinaria la masa permanece constante, es decir, la masa consumida de los reactivos es igual a la masa obtenida de los productos».1 Una salvedad que hay que tener en cuenta es la existencia de las reacciones nucleares, en las que la masa sí se modifica de forma sutil, en estos casos en la suma de masas hay que tener en cuenta la equivalencia entre masa y energía. Esta ley es fundamental para una adecuada comprensión de la química.
Los ensayos preliminares hechos por Robert Boyle en 1673 parecían indicar lo contrario: pesada meticulosa de varios metales antes y después de su oxidación mostraba un notable aumento de peso. Estos experimentos, por supuesto, se llevaban a cabo en recipientes abiertos.2
La combustión, uno de los grandes problemas que tuvo la química del siglo XVIII, despertó el interés de Antoine Lavoisier porque éste trabajaba en un ensayo sobre la mejora de las técnicas del alumbrado público de París. Comprobó que al calentar metales como el estaño y el plomo en recipientes cerrados con una cantidad limitada de aire, estos se recubrían con una capa de calcinado hasta un momento determinado del calentamiento, el resultado era igual a la masa antes de comenzar el proceso. Si el metal había ganado masa al calcinarse, era evidente que algo del recipiente debía haber perdido la misma cantidad de masa. Ese algo era el aire. Por tanto, Lavoisier demostró que la calcinación de un metal no era el resultado de la pérdida del misterioso flogisto, sino la ganancia de algún material: una parte de aire. La experiencia anterior y otras más realizadas por Lavoisier pusieron de manifiesto que si tenemos en cuenta todas las sustancias que forman parte en una reacción química y todos los productos formados, nunca varía la masa. Esta es la ley de la conservación de la masa, que podemos enunciarla, pues, de la siguiente manera: "En toda reacción química la masa se conserva, esto es, la masa total de los reactivos es igual a la masa total de los productos".
  
BALANCEO DE ECUACIONES POR EL METODO DE TANTEO O SIMPLE INSPECCION

TANTEO O SIMPLE INSPECCION:
se siguen los siguientes pasos, que se ejemplifican con la reaccion entre el acido clorhidrico y el hidroxido de calcio para producir oxido de calcio y agua:
 
1. Se identifican los reactivos y los productos de la reaccion:
HCL + Ca(OH)2 --------> CaCl2 + H2O
 
2. Se comprueba si la ecuacion quimica esta balanceada. por ello se verifica si el numero de atomos de cada clase es igual en los reactivos y en los productos:
REACTIVOS: 3 átomos de H, 1 átomo de Cl, 1 átomo Ca y 2 átomos de O
PRODUCTO: 2 átomos de H, 2 átomos de Cl, 1 átomo Ca y 1 átomo de O
 
3. Se ajusta la ecuacion quimica colocando coeficientes delante de la formulas de los reactivos y de los productos. Como existen dos átomos de cloro en los productos y uno en los reactivos, se coloca un 2 delante del HCl y así los átomos de cloro quedan balanceados. Ahora hay cuatro atomos de hidrogeno de los reactivos y dos átomos hidrogeno en los productos. Para balancear los átomos de H se coloca un 2 delante del agua:
2HCL + Ca(OH)2 ------> CaCl2 + 2H2O 
 
4. Se comprueba que la ecuacion quimica quede balanceada.
REACTIVOS: 4 átomos de H, 2 átomos de Cl, 1 átomo de Ca y 2 átomos de O
PRODUCTOS: 4 átomos de H, 2 átomos de Cl, 1 átomo de Ca y 2 átomos de O
 
LA ECUACION QUIMICA QUEDO BALANCEADA


                                LEY DE LAS PROPORCIONES DEFINIDAS

La ley de las proporciones definidas o la Ley de Proust enuncia:

Cuando se combinan dos o más elementos para dar un compuesto determinado, siempre lo hacen en la misma proporción fija, con independencia de su estado físico y de la manera de obtenerlo.


Consecuencias de la ley de Proust:

1º La constitución, por ejemplo, del cloruro sódico indica que para formar 5 g de cloruro sódico, se necesitan 3 g de cloro y 2 g de sodio, por lo que la proporción entre las masas de ambos elementos es:



2º Sin embargo, si hacemos reaccionar ahora 10 g de cloro con otros 10 g de sodio, no obtendremos 20 g de cloruro sódico, sino una cantidad menor, debido a que la relación de combinación entre ambas masas siempre es 1,5 por lo que:




3º Si ahora quisiéramos hallar la proporción entre los átomos que se combinan de cloro y sodio para formar cloruro sódico, deberíamos dividir la cantidad de cada elemento entre su masa atómica, de forma que si reaccionan 6 g de Cl con 4 g de Na, como 35,5 g/mol y 23 g/mol son las masas atómicas del cloro y sodio, respectivamente, entonces:



Lo que indica que por cada 0,17 moles de cloro reaccionan otros 0,17 moles de sodio para formar el cloruro sódico, o cualquier múltiplo o submúltiplo de esa reacción. Por tanto, 1 átomo de cloro también se combina con 1 átomo de sodio para formar cloruro sódico, luego la fórmula de éste compuesto es NaCl y la proporción entre sus átomos es 1:1.


                                       TIPOS DE REACCIONES QUIMICAS.

Una reacción química consiste en el cambio de una o mas sustancias en otra(s).  Los reactantes son las sustancias involucradas al inicio de la reacción y los productos son las sustancias que resultan de la transformación.  En una ecuación química que describe una reacción, los reactantes, representados por sus fórmulas o símbolos, se ubican a la izquierda de una flecha; y posterior a la flecha,  se escriben los productos, igualmente simbolizados. En una ecuación se puede indicar los estados físicos de las sustancias involucradas de la manera siguiente: (s) para sólido, (l) para líquido, (g) para gaseoso y (ac) para soluciones acuosas.  Los catalizadores, temperaturas o condiciones especiales deben especificarse encima de la flecha.

 

Ecuación Química: representa la transformación de sustancias.
Reactante(s) à Producto(s)


Tipos de Reacciones Químicas
Las reacciones químicas pueden clasificarse de manera sencilla en cinco grandes grupos.  Existen otras clasificaciones, pero para predicción de los productos de una reacción, esta clasificación es la más útil. 

Reacciones de Síntesis o Composición
En estas reacciones, dos o más elementos o compuestos se combinan, resultando en un solo producto. 

Síntesis Química: la combinación de dos o mas sustancias para formar un solo compuesto.
A +   B à C
(donde A y B pueden ser elementos o compuestos)

Ejemplo:
Escriba la reacción de síntesis entre el aluminio y el oxígeno.

Solución:
Dos elementos se combinarán para formar el compuesto binario correspondiente.  En este caso, el aluminio y el oxígeno formarán el óxido de aluminio.  La ecuación que representa la reacción es la siguiente:
4 Al (s) +  3 O2 (g) à  2 Al2O3 (s)

Nota:  Es importante recordar los elementos que son diatómicos, los cuales se escriben con un subíndice de 2 cuando no se encuentran combinados y participan en una reacción.  Estos son el hidrógeno, nitrógeno, oxígeno, flúor, cloro, bromo y el  yodo. 

Reacciones de Descomposición o Análisis
Estas reacciones son inversas a la síntesis y son aquellas en la cuales se forman dos o más productos a partir de un solo reactante, usualmente con la ayuda del calor o la electricidad.

Descomposición Química: la formación de dos o mas sustancias a partir de un solo compuesto.
A à  B + C
(donde B y C pueden ser elementos o compuestos)
   
Ejemplo­:
Escriba la ecuación que representa la descomposición del óxido de mercurio (II).

Solución:
Un compuesto binario se descompone en los elementos que lo conforman.  En este caso, el óxido de mercurio (II) se descompone para formar los elementos mercurio y oxígeno. La ecuación que representa la reacción es la siguiente:
2 HgO (s) à  2 Hg (l)  + O2 (g)

Reacciones de Desplazamiento o Sustitución Sencilla
Estas reacciones son aquellas en las cuales un átomo toma el lugar de otro similar pero menos activo en un compuesto.  En general, los metales reemplazan metales (o al hidrógeno de un ácido) y los no metales reemplazan no metales.  La actividad de los metales es la siguiente, en orden de mayor actividad a menor actividad: Li, K, Na, Ba, Ca, Mg, Al, Zn, Fe, Cd, Ni, Sn, Pb, (H), Cu, Hg, Ag, Au.  El orden de actividad de los no metales mas comunes es el siguiente:  F, O, Cl, Br, I, siendo el flúor el más activo.

Desplazamiento Químico: un elemento reemplaza a otro similar y menos activo en un compuesto.
AB + C à  CB + A   ó   AB + C  à  AC + B
(dónde C es un elemento más activo que un metal A o un no metal B)


Ejemplo 1:
Escriba la reacción entre el magnesio y una solución de sulfato de cobre (II).

Solución:
El magnesio es un metal más activo que el cobre y por tanto, lo reemplazará en el compuesto, formando sulfato de magnesio.  A la vez, el cobre queda en su estado libre como otro producto de la reacción.  La ecuación que representa la reacción es la siguiente:
Mg (s) +  CuSO4 (ac) à  MgSO4 (ac)  +  Cu (s)
Ejemplo 2:
Escriba la reacción entre el óxido de sodio y el flúor. 

Solución:
El flúor es un no metal más activo que el oxígeno y por tanto, lo reemplazará en el compuesto, formando fluoruro de sodio.  A la vez, el oxígeno queda en su estado libre como otro producto de la reacción.  La ecuación que representa la reacción es la siguiente:
 2 F2 (g) +  2 Na2O (ac) à 4 NaF (ac)  +  O2 (g)

Ejemplo 3: 
Escriba la reacción entre la plata y una solución de nitrato de bario. 

Solución:
La reacción no se da, puesto que la plata es un metal menos activo que el bario y por ende, no lo reemplaza. 

Reacciones de Doble Desplazamiento o Intercambio
Estas reacciones son aquellas en las cuales el ión positivo (catión) de un compuesto se combina con el ión negativo (anión) del otro y viceversa, habiendo así un intercambio de átomos entre los reactantes.  En general, estas reacciones ocurren en solución, es decir, que al menos uno de los reactantes debe estar en solución acuosa.

Doble Desplazamiento Químico: los reactantes intercambian átomos – el catión de uno se combina con el anión del otro y viceversa.
AB + CD à  AD + CB
Solución:
En esta reacción, la plata reemplaza al hidrógeno del ácido, formando cloruro de plata.  Al mismo tiempo, el hidrógeno reemplaza a la plata, formando ácido nítrico con el nitrato.  La ecuación que representa la reacción es la siguiente:
AgNO3 (ac) +  HCl (ac) à  HNO3 (ac)  +  AgCl (s)

Reacciones de Neutralización
Estas reacciones son de doble desplazamiento o intercambio.  Su particularidad es que  ocurren entre un ácido y una base y los productos de la reacción son agua y una sal formada por el catión de la base y el anión del ácido. 
Por ejemplo, la reacción entre el ácido sulfúrico y el hidróxido de sodio resulta en la formación de agua y sulfato de sodio.  La ecuación que representa esta reacción es la siguiente:   
H2SO4 (ac) +  2 NaOH (ac) à  2 H2O (l)  +  Na2SO4 (ac)

Reacciones de Combustión
Estas reacciones ocurren cuando un hidrocarburo orgánico (un compuesto que contiene carbono e hidrógeno) se combina con el oxígeno, formando agua y dióxido de carbono como productos de la reacción y liberando grandes cantidades de energía.  Las reacciones de combustión son esenciales para la vida, ya que la respiración celular es una de ellas. 
   
Combustión: un hidrocarburo orgánico reacciona con el oxígeno para producir agua y dióxido de carbono.
hidrocarburo + O2 à  H2O + CO2
Ejemplo 1:
Escriba la ecuación que representa la reacción de combustión de la glucosa, el azúcar sanguíneo (C6H12O6).

Solución:
En esta reacción, la glucosa es un hidrocarburo que reacciona con el oxígeno, resultando en los productos de la combustión – el agua y el dióxido de carbono. La ecuación que representa la reacción es la siguiente:
C6H12O6  +  O2  à  H2O  +  CO2


REACCIONES ENDOTERMICAS Y EXOTERMICAS

La energía se conserva durante las reacciones químicas. En una reacción pueden considerarse dos fases diferenciadas: en primer lugar, los enlaces químicos de los reactivos se rompen, y luego se reordenan constituyendo nuevos enlaces. En esta operación se requiere cierta cantidad de energía, que será liberada si el enlace roto vuelve a formarse. Los enlaces químicos con alta energía se conocen como enlaces `fuertes', pues precisan un esfuerzo mayor para romperse. Si en el producto se forman enlaces más fuertes que los que se rompen en el reactivo, se libera energía en forma de calor, constituyendo una reacción exotérmica. En caso contrario, la energía es absorbida y la reacción se denomina endotérmica. Debido a que los enlaces fuertes se crean con más facilidad que los débiles, son más frecuentes las reacciones exotérmicas espontáneas; un ejemplo de ello es la combustión de los compuestos del carbono en el aire para producir CO2 y H2O, que tienen enlaces fuertes. Pero también se producen reacciones endotérmicas espontáneas, como la disolución de sal en agua.
Las reacciones endotérmicas suelen estar asociadas a la disociación de las moléculas. Esto último puede medirse por el incremento de la entropía del sistema. El efecto neto de la tendencia a formar enlaces fuertes y la tendencia de las moléculas e iones a disociarse se puede medir por el cambio en la energía libre del sistema. Todo cambio espontáneo a temperatura y presión constantes implica un incremento de la energía libre, acompañado de un aumento de la fuerza del enlace.
Una reacción química es el proceso en el que una o más sustancias se transforman en otras sustancias diferentes —los productos de la reacción. Un ejemplo de reacción química es la formación de óxido de hierro producida al reaccionar el oxígeno del aire con el hierro.
Los productos obtenidos a partir de ciertos tipos de reactivos dependen de las condiciones bajo las que se da la reacción química. No obstante, tras un estudio cuidadoso se comprueba que, aunque los productos pueden variar según cambien las condiciones, determinadas cantidades permanecen constantes en cualquier reacción química. Estas cantidades constantes, que reciben el nombre de magnitudes conservadas, incluyen el número de cada tipo de átomo presente, la carga eléctrica y la masa total.
En algunos casos, como en la combustión, las reacciones se producen de forma rápida. Otras reacciones, como la oxidación, tienen lugar con lentitud. La cinética química, que estudia la velocidad de las reacciones, contempla tres condiciones que deben darse a nivel molecular para que tenga lugar una reacción química: las moléculas deben colisionar, han de estar situadas de modo que los grupos que van a reaccionar se encuentren juntos en un estado de transición entre los reactivos y los productos, y la colisión debe tener energía suficiente para crear el estado de transición y transformarlo en productos.
Las reacciones rápidas se dan cuando estas tres condiciones se cumplen con facilidad. Sin embargo, si uno de los factores presenta cierta dificultad, la reacción resulta especialmente lenta.
La velocidad de la reacción aumenta en presencia de un catalizador, una sustancia que no resulta alterada o se regenera, por lo que el proceso continúa. La mezcla de gases hidrógeno y oxígeno a temperatura ambiente no explota, pero si se añade platino en polvo la mezcla explosiona al cubrirse la superficie del platino con el oxígeno absorbido. Los átomos de platino alargan los enlaces de las moléculas de O2, debilitándolos y rebajando la energía de activación. Los átomos de oxígeno reaccionan rápidamente con moléculas de hidrógeno, colisionando contra ellas y formando agua y regenerando el catalizador. Las fases por las que pasa una reacción constituyen el `mecanismo de reacción'.
La velocidad de la reacción puede modificarse no sólo con catalizadores, sino también mediante cambios en la temperatura y en las concentraciones. Al elevar la temperatura se incrementa la velocidad a causa del aumento de la energía cinética de las moléculas de los reactivos, lo que provoca un mayor número de colisiones por segundo y hace posible la formación de estados de transición. Con el aumento de la concentración se consigue incrementar la velocidad de la reacción, al aumentar el número y la velocidad de las colisiones moleculares.

 Calores de reacción
La termodinámica es la ciencia que estudia las transformaciones de la energía.
Un concepto esencial de la termodinámica es el de sistema macroscópico, que se define como un conjunto de materia que se puede aislar espacialmente y que coexiste con un entorno infinito e imperturbable. El estado de un sistema macroscópico en equilibrio puede describirse mediante propiedades medibles como la temperatura, la presión o el volumen, que se conocen como variables termodinámicas. Es posible identificar y relacionar entre sí muchas otras variables (como la densidad, el calor específico, la compresibilidad o el coeficiente de expansión térmica), con lo que se obtiene una descripción más completa de un sistema y de su relación con el entorno.
Primera ley de la Termodinámica
Primera ley de la termodinámica: en un proceso, la energía no se crea ni se destruye.
Se trata de la energía que conocemos como energía interna, U, del sistema, la cual a veces también se denomina energía térmica.
Desde el punto de vista microscópico, la energía interna tiene que ver con el movimiento de las moléculas del gas, sus rotaciones, sus vibraciones, la energía de los electrones en los átomos presentes y tantos otros componentes energéticos que podemos intuir que existen.
Otro enunciado más completo de la primera ley de la termodinámica es el siguiente:
Para que la energía se conserve en un proceso, el flujo de calor, q, mas el trabajo, w, que atraviesan la frontera del sistema deben ser iguales al cambio en la energía interna del sistema, Ufinal - Uinicial
ðU = q + W
Segunda Ley de la termodinámica
La segunda ley de la termodinámica da una definición precisa de una propiedad llamada entropía. La entropía puede considerarse como una medida de lo próximo o no que se halla un sistema al equilibrio; también puede considerarse como una medida del desorden (espacial y térmico) del sistema. La segunda ley afirma que la entropía, o sea, el desorden, de un sistema aislado nunca puede decrecer. Por tanto, cuando un sistema aislado alcanza una configuración de máxima entropía, ya no puede experimentar cambios: ha alcanzado el equilibrio. La naturaleza parece pues `preferir' el desorden y el caos. Puede demostrarse que el segundo principio implica que, si no se realiza trabajo, es imposible transferir calor desde una región de temperatura más baja a una región de temperatura más alta.
El segundo principio impone una condición adicional a los procesos termodinámicos. No basta con que se conserve la energía y cumplan así el primer principio. Una máquina que realizara trabajo violando el segundo principio se denomina “móvil perpetuo de segunda especie”, ya que podría obtener energía continuamente de un entorno frío para realizar trabajo en un entorno caliente sin coste alguno. A veces, el segundo principio se formula como una afirmación que descarta la existencia de un móvil perpetuo de segunda especie.
Tercera Ley de la termodinámica
El segundo principio sugiere la existencia de una escala de temperatura absoluta con un cero absoluto de temperatura. El tercer principio de la termodinámica afirma que el cero absoluto no puede alcanzarse por ningún procedimiento que conste de un número finito de pasos. Es posible acercarse indefinidamente al cero absoluto, pero nunca se puede llegar a él.
La ley cero de la termodinámica
Dos cuerpos en equilibrio térmico con un tercero están en equilibrio térmico entre sí.
La definición de equilibrio térmico nos basta para construir una escala de temperatura. Para ello se escoge un sistema, llamado termómetro, con la característica que posea alguna propiedad que varíe cuando se le coloque en contacto térmico con otros sistemas (el caso representativo es la dilatación del mercurio en un tubo capilar). Cuando el termómetro se pone en equilibrio térmico con el hielo en el punto de fusión, se hace una marca sobre el similar, cuando se sumerge en agua en el punto de ebullición a nivel del mar, se hace la marca de 100 °C. Por ultimo, se divide la escala cien intervalos iguales y se acabó. Contamos con un termómetro que usa la escala llamada centígrada o celcius.
No hay que confundir calor con temperatura, aunque al lenguaje cotidiano nos traicione (estamos acostumbrados a decir que un cuerpo esta “caliente” cuando su temperatura es alta, y tal ves de aquí es donde proviene la confusión)
  • La temperatura es una propiedad de los sistemas.
  • El calor es una forma de energía en transito que solamente aparece al atravesar la frontera de un sistema durante un proceso.
  • Por tanto, no debemos decir que los cuerpos tienen calor, pero en cierta dirección, pero la temperatura nunca fluye.
  • La temperatura se mide en grados
  • El calor se mide en joules
  • El calor siempre fluye de los objetos que están a temperatura alta hacia los que tiene temperatura baja. Nunca se ha observado lo contrario, ni que haya un flujo neto de calor entre dos cuerpos a la misma temperatura.
  • La temperatura del sistema, Ts, y la de los alrededores, Ta, determinan entonces la dirección en la que fluye el calor en un proceso (cuando la frontera permite la transferencia). El calor entra al sistema cuando Ta > Ts; el calor sale del sistema en cuanto Ta < Ts.






1 comentario: